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Negotiation and Arbitration

Two parties (e.g. workers union and the company) enter into
negotiations for a new contract. If the negotiations fail, the
union can threaten a strike. A strike is mutually costly and
motivates both parties to make concessions.

But what if a strike is not possible (Police, fire departments)?
Compulsory arbitration is a typical solution.
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Problem

Is bargaining compatible with compulsory arbitration?
(Stevens, 1966)

Conventional arbitration tends to split the difference
(compromise).

This leads to a chilling effect and less desirable outcomes
than could be negotiated
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Solution: Final-Offer Arbitration

Final-Offer Arbitration (Stevens, 1966): The arbitrator
examines the final offers of both parties and must pick one
with no compromise.

Parties must find a natural balance between appealing to the
judge’s sense of fairness (moderate offer) and the desire for a
big win (extreme offer).
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An early example: The Trial of Socrates

After being found guilty of moral corruption and impiety by a
jury of 500 men, Socrates and his prosecutor each proposed a
punishment: a fine of 3000 drachmae or death. The jury
voted.
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FOA In Practice

Also known as Pendulum or Baseball Arbitration.

A variant is MEDLOA (Mediation with Last Offer
Arbitration)

Adopted in many states (Michigan, Wisconsin 1970s) in
the public sector (e.g. police, firefighters)

Major League Baseball after 1972 strike

Chile’s 1979 Labor Reform

Railway shipping in Canada
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The Game Model

The judge chooses some fair value ξ and keeps it in mind.

Player I (the minimizer, e.g. company) and Player II (the
maximizer, e.g. union) present their final offers x1, x2 to
the judge.

Whichever final offer is closer to ξ is the settlement.
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Further assumptions

As far as players are concerned, the fair settlement is
chosen randomly from a distribution F with density
function f .

F is common knowledge.

WLOG, the median of the distribution is 0.

The game is zero-sum.
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Game Rewards

The payment made by Player I to Player II is

K (x1, x2|ξ) =

{
x1 if |x1 − ξ| < |x2 − ξ|
x2 if |x1 − ξ| > |x2 − ξ|

If |x1 − ξ| = |x2 − ξ|, the payment is x1 or x2 with equal
probability.

Assuming x1 < x2, the expected payoff may be written

K = x1P

(
ξ <

x1 + x2
2

)
+ x2P

(
ξ >

x1 + x2
2

)
or equivalently

K = x2 + (x1 − x2)F

(
x1 + x2

2

)
9 / 60



Minimax Theorem

A pair of strategies x∗1 and x∗2 are said to be optimal if

K (x1, x
∗
2 ) ≥ K (x∗1 , x

∗
2 ) ≥ K (x∗1 , x2)

for all x1, x2.

The minimax theorem (von Neumann, 1928) states that all
zero-sum games have optimal strategies (though they may be
pure or mixed).
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Brams-Merrill Theorem (1983)

Theorem

(1) If f ′(0) exists and f (0) > 0, then locally optimal strategies
are

x∗1 = − 1

2f (0)
and x∗2 =

1

2f (0)
.

(2) If f is “sufficiently concentrated at the median”, then
these represent the unique globally optimal strategy pair.

Brams and Merrill also provide a weaker condition for global
optimality.
Both Normal and Uniform distributions satisfy the second
condition.
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Divergence of Global Optimal Pure Strategies

(Brams-Merrill, 1983)
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Related Problems

Optimal Location of Candidates in Ideological Space
(Owens, Shapley 1989)
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Game-Theoretic Models of Tender Design
(Mazalov, Tokareva, 2014)
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Multiple-Issue FOA

When more than one issue is being arbitrated, two major
variants of FOA have been used (Farber, 1980):

Issue by Issue: Each party submits a vector of final
offers and the arbitrator is free to compose a compromise
by selecting some offers from each party

Whole Package: Both parties submit a vector of final
offers and the arbitrator must choose one or the other in
its entirety
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Challenges in Extending the Model

How do we compare players’ valuation of settlement
bundles?

How do we model the uncertainty of the arbitrator’s
opinion?

How does the arbitrator measure “closeness”?

How do we handle qualitative issues in dispute?

What if separate quantitative issues are not fungible?

Modeling risk aversion?

Extending to multiple players?
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The Multi-Issue Game Setting

Players I and II present final-offers a,b ∈ Rd

Judge selects ξ ∼ F as an ideal fair settlement.

F is common knowledge.

Judge uses reasonableness function
R(x, ξ) : Rd × Rd → R to compare final-offers.

Game is zero-sum.

Payoff is

K (a,b|ξ) =

{∑
i ai R(a, ξ) > R(b, ξ)∑
i bi R(a, ξ) < R(b, ξ)
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Choice of F and R

Distribution

Normal ξ ∼ N (µ,Σ) (WLOG, assume µ = 0)

Uniform ξ ∼ Unif
(
×d

j=1[−αj , αj ]
)
, where αj > 0

Criterion Reasonableness Function

Net Offer RNO(x, ξ) = −
∣∣∣∑d

j=1 xj − ξj
∣∣∣

L1 RL1(x, ξ) = −
∑d

j=1 |xj − ξj |

L∞ RL∞(x, ξ) = −maxj {|xj − ξj |}

Lp RLp(x, ξ) = −
∑d

j=1 |xj − ξj |
p

L2 RL2(x, ξ) = −
∑d

j=1(xj − ξj)2

Mahalanobis RM(x, ξ) = −(x− ξ)′Σ−1(x− ξ)
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2NLp Circles

DLp(x, y) =

(
d∑

i=1

|xi − yi |p
)1/p

“Circles” and Midset curves under Minkowski metrics (Lp)
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2NL1, 2NL∞, 2NLp

Theorem

In 2NL1, 2NL∞ or 2NLp if pure optimal strategies exist for
Players i = 1, 2 then they are given by

(x∗i , y
∗
i ) =

(
(−1)ix∗, (−1)ix∗

)
,

where x∗ =

√
2π(σ2

x + 2ρσxσy + σ2
y )

4
.
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2NL1 Proof Sketch

As it is sub-optimal for either player to choose a pure strategy
off the line y = x , the game reduces to the one-dimensional
case.
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2NL2 Local Optimality

Theorem

In 2NL2, suppose ρ > max
{
−σ2

x+3σ2
y

4σxσy
,−3σ2

x+σ
2
y

4σxσy

}
. The pure

strategy pair in the previous theorem is locally optimal.

Because MidL2[a,b] is a straight line, we can essentially reduce
the dimension of F .
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2NL2 Payoff Function

Let (ξ, η) ∼ N (0,Σ) be the opinion of the arbitrator, where

Σ =

[
σ2
x ρσxσy

ρσxσy σ2
y

]
C1(a,b) = {(x , y)|(x1−x)2 +(y1−y)2 < (x2−x)2 +(y2−y)2}
and C2(a,b) defined similarly.
Pi = P

(
(ξ, η) ∈ Ci(a,b)

)
Assuming a 6= b, the expected payoff

K (a,b) = (x1 + y1)P1 + (x2 + y2)P2

may be written

K (a,b) = (x2 + y2) + (x1 + y1 − x2 − y2)P1.
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2NL2 Local Optimality Proof Overview cont.

Express P1 one-dimensionally:

P1 = P
(
(x1 − ξ)2 + (y1 − η)2 < (x2 − ξ)2 + (y2 − η)2

)
(1)

= P

(
(x2 − x1)ξ + (y2 − y1)η <

x22 + y 2
2 − x21 − y 2

1

2

)
(2)

= P(Z < z) (3)

where

z =
x22 + y 2

2 − x21 − y 2
1

2
√

(b− a)TΣ(b− a)
(4)

we may write

K (a,b) = (x2 + y2) + (x1 + y1 − x2 − y2)Φ(z) (5)

where Φ(z) is the standard Gaussian cdf.
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2NL2 Local Optimality Proof Overview cont.

By solving the system of first-order equations

d

dx1
K |a∗,b∗ =

d

dy1
K |a∗,b∗ =

d

dx2
K |a∗,b∗ =

d

dy2
K |a∗,b∗ = 0

we arrive at the unique a∗,b∗ given in the theorem. It is
straightforward to verify that the second order condition holds
provided

ρ > max

{
−
σ2
x + 3σ2

y

4σxσy
,−

3σ2
x + σ2

y

4σxσy

}
.
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2NL2 Global Optimality

Theorem

If ρ > 0, the solution points a∗,b∗ given in the previous
theorem are globally optimal.

In other words, K (a,b∗) ≥ 0∀a ∈ R2, with equality only when
a = a∗.

Thus players need not consider mixed strategies. The proof
relies on a geometric interpretation of the players’ strategies.
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2NL2 Global Optimality Proof Overview

z =
2x∗2 − x21 − y 2

1

2
√

(b∗ − a)TΣ(b∗ − a)
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2NL2 Global Optimality: Proof Overview cont.

If K (a,b∗) ≤ 0 then x1 + y1 < 0 and either

x21 + y 2
1 < 2x∗2 or x1 + y1 ≤ −2x∗.
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2NL2 Global Optimality: Proof Overview cont.

K (a,b∗) = 2x∗ +
1

2
(x1 + y1 − 2x∗) = 2x∗ + x1 + y1 ≥ 0

when z = 0, with equality only when a = (−x∗,−x∗).
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2NL2 Global Optimality: Proof Overview cont.

Against Player II’s strategy b∗ = (x∗, x∗), any pure strategy
a = (x1, y1) may be represented as

a(r , θ) = (x∗ + r cos θ, x∗ + r sin θ).
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2NL2 Global Optimality: Polar Representation

Letting t(θ) = − cos θ − sin θ,

K (a,b∗) = 2x∗ − rt(θ)Φ(z)

So K < 0 is equivalent to

Φ(z) >
2x∗

rt(θ)
= f (r , θ)
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2NL2 Global Optimality: Two Tricks

To avoid the difficulties inherent in Φ(z), we use two tricks:
(1) For z < 0, the normal cdf is bounded by the sigmoidal

Φ(z) <
1

1 + exp
(
−
√

8
π
z
)

(2) For z > 0, by its concavity, Φ(z) < y(z), the line tangent
at z = 0
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2NL2 Global Optimality: Proof Overview cont.

For fixed θ ∈
[
3π
4
, 7π

4

]
:
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It may come as no surprise that the arbitrated outcome using
whole Package has a higher variance than Issue-By-Issue.

Theorem

The expected payoff is zero under both Issue-by-Issue and
Whole-Package variants. If both player play optimally then the
variances of the awards are π

2
(σ2

x + σ2
y ) and

π
2

(σ2
x + 2ρσxσy + σ2

y ) respectively.
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2UL2 - Globally Optimal Pure Strategies

Suppose ξ is drawn uniformly at random from
Ξ := [−α, α]× [−β, β], where WLOG 0 < α ≤ β, and the
judge uses the L2 metric.

Theorem

In 2UL2, the strategy pair a∗ =
(
−β

2
,−β

2

)
,b∗ =

(
β
2
, β
2

)
is the

unique globally optimal strategy pair.

To prove this, we let Player II play b∗ and show that the
expected payoff is minimized only when Player I plays a∗.
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2UL2 Proof - Cases
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2UL2 Proof Case 1

In the first case, we
can show directly
that the payoff
function is minimized
only at a = a∗, which
lies in this region.
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2UL2 Proof Case 2

Here we parameterize
the strategy of Player
I along line segments
by slope m and
λ ∈ [0, 1], and show
that the payoff
function is a
decreasing function of
λ, and on the
boundary the payoff
is positive.

38 / 60



2UL2 Proof Case 3

We parameterize the
strategy by p ∈ [.5, 1]
(i.e. P1) and
x̄ ∈ [0, 2α] (the
length of the upper
boundary of C1) to
show there is no local
minima.
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2UL2 Proof Case 4

The final case is
handled directly; it is
shown by the first
order condition that
no minimum to the
payoff function exists
in this region.
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Nash Equilibrium

In non-zero sum games, the most popular solution concept is
the Nash equilibrium.
Let xi ∈ Si be the strategy of Player i from strategy space i .
The reward functions are Ki(x1, . . . , xn). A strategy profile
x∗1 , . . . , x

∗
n is a Nash equilibrium if for each player i ,

Ki(xi , x
∗
−i) ≤ Ki(x∗)

In other words, knowing the strategy x∗1 , x
∗
2 , . . . , x

∗
n of the

other players, player i has no incentive to deviate from x∗i .
Every continuous game with compact strategy spaces and
continuous utility functions are guaranteed a Nash equilibrium
(pure or mixed).
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Interpleader

In 1972, Ferdinand Marcos, then the President of the Republic
of the Philippines, deposited approximately $2 million with
Merrill Lynch in New York City. That money sat in a Merrill
Lynch account for the next thirty-odd years, growing to
approximately $33.8 million worth of cash and securities. By
2000, a number of claimants to Marcos’s estate had come
knocking, so Merrill Lynch filed an interpleader to determine
who should get the money.
https://www.casemine.com/judgement/us/591465abadd7b049342906e8

A dispute such as this between 3 or more parties may be
modeled by an N-player arbitration game.
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Generalize to N players

A unit must be split between the players. Each player i
chooses a vector xi ∈ ∆N , where
∆N = {x|x ∈ RN ,

∑
xi = 1, x ≥ 0}. Suppose each player i

supplies evidence of strength λi ≥ 0 in her favor to the judge.
If λi = 0 then the player has supplied no evidence in her favor.
Suppose that based on this evidence the judge decides on a

fair split of the unit award. Let ξ = (ξ1, ξ2, . . . , ξN) be the fair
split, where ξ ∈ ∆N .

43 / 60



Dirichlet Distribution

Assume that it is common knowledge among the players that
ξ will be drawn from a Dirichlet distribution with parameter
α = (α1, . . . , αN), where αi = λi + 1.. The density function is

f (x) =

∏N
i=1 x

λi
i

B(α)

Where B(α) is a normalizing constant.
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Voronoi Cells in the Simplex

Given the N final-offers, we may partition ∆N into N convex
Voronoi cells. Call these Vi for i = 1, . . . ,N .
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If λi = 0 for all players, the probability distribution is uniform
over the simplex. In this case, the payoff function is

Ki(x1, . . . , xN) = (N − 1)!
N∑
j=1

xj
i

∫∫
Vj

N!
√

2N

√
N + 1

dVj
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Theorem

Let N ≥ 3. Players 2, . . . ,N demand β and offer 1−β
N−1 to the

opponents. Player 1 determines to demand α. Then P1 is
maximized when Player 1 offers 1−α

N−1 to each other player.

This can be proven inductively, for in the (N − 1)-simplex an
equal split maximizes the volume of the N − 1 faces adjacent
to (1, 0, . . . , 0) which are (N − 2)-simplices, and maximizes
the distance from (1, 0, . . . , 0) to the opposite vertex.
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The harmonic numbers HN are defined as the sum of the
inverses of the first n integers:

Hn = 1 +
1

2
+

1

3
+ · · ·+ 1

n

The harmonic numbers roughly approximate the natural
logarithm.

Theorem

For an N player FOA game where ξ is chosen uniformly at
random, assuming the conjecture, a pure equilibrium strategy

is for each player to demand
HN−1

N − 1
for himself and offer the

remaining portion equally to the other players.1
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Relative Greed Grows Logarithmically

The relative greed of a player i demanding xi would be

gi =
xi
1
N

= Nxi

When playing the pure equilibrium strategy, the relative greed
gi = N

N−1HN−1 ≈ ln(N − 1). This is to say, although in
equilibrium players demand less as the number of players
increases, their relative greed actually increases logarithmically
with the number of players.
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Symmetric Dirichlet Distributions

Suppose each player gives the same level of evidence in his
favor. In other words, λ1 = · · · = λN = λ. It would make
sense that the increasing concentration of probability at the
mode, ( 1

N
, . . . , 1

N
) would cause the Player’s equilibrium offers

to converge, but is this the case? And at what rate?
In the 2 player case, the game becomes zero-sum with
ξ ∼ Beta(λ + 1, λ + 1), we know that the optimal pure
strategy for each player is to demand

x∗ =
1

2
+

Γ(λ + 1)24λ

2Γ(2λ + 2)
.
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This suggests that we may be able to approximate the Nash
equilibrium for any N and λ

α∗(N , λ) ≈ 1

N
+

√
πΓ(λ + 1)HN−1

2Γ(λ + 3
2
)(N − 1)
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Non-Zero Sum 2-Issue 2-Player FOA

We will not assume the issues are fungible or even in the same
units. Because both players know the judge chooses a fair
settlement from F , they may standardize their offers;

(xi , yi)→
(
xi
σx
,
yi
σy

)
So effectively we may assume that the judge chooses (ξ, η)
from N(0,Σ) with

Σ =

[
1 ρ
ρ 1

]
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The players value a settlement (x , y) as vi(x , y) = αix + βiy ,
where α1, β1 < 0, α2, β2 > 0. However, as we may scale the
payoff functions without affecting the game, we may as well
assume that β1 = −1 and β2 = 1.

Thus

K1(a,b) = α1x2 − y2 +
(
α1(x1 − x2)− (y1 − y2)

)
Φ(z) (6)

K2(a,b) = α2x1 + y1 +
(
α2(x2 − x1) + (y2 − y1)

)
Φ(−z) (7)
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Possible Pure Equilibria
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Improvement through negotiation
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Thank You
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