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Negotiation and Arbitration

Two parties (e.g. workers union and the company) enter into
negotiations for a new contract. If the negotiations fail, the
union can threaten a strike. A strike is mutually costly and
motivates both parties to make concessions.

But what if a strike is not possible (Police, fire departments)?
Compulsory arbitration is a typical solution.



Is bargaining compatible with compulsory arbitration?
(Stevens, 1966)

m Conventional arbitration tends to split the difference
(compromise).

m This leads to a chilling effect and less desirable outcomes
than could be negotiated



Solution: Final-Offer Arbitration

Final-Offer Arbitration (Stevens, 1966): The arbitrator
examines the final offers of both parties and must pick one

with no compromise.

Parties must find a natural balance between appealing to the
judge's sense of fairness (moderate offer) and the desire for a

big win (extreme offer).



An early example: The Trial of Socrates

After being found guilty of moral corruption and impiety by a
jury of 500 men, Socrates and his prosecutor each proposed a
punishment: a fine of 3000 drachmae or death. The jury
voted.
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FOA In Practice

Also known as Pendulum or Baseball Arbitration.

A variant is MEDLOA (Mediation with Last Offer
Arbitration)

m Adopted in many states (Michigan, Wisconsin 1970s) in
the public sector (e.g. police, firefighters)

m Major League Baseball after 1972 strike
m Chile’s 1979 Labor Reform

m Railway shipping in Canada



The Game Model

m The judge chooses some fair value & and keeps it in mind.

m Player | (the minimizer, e.g. company) and Player Il (the
maximizer, e.g. union) present their final offers x, x, to
the judge.

m Whichever final offer is closer to ¢ is the settlement.



Further assumptions

m As far as players are concerned, the fair settlement is
chosen randomly from a distribution F with density
function f.

m F is common knowledge.
m WLOG, the median of the distribution is 0.

m The game is zero-sum.



The payment made by Player | to Player Il is

xp if xg = ¢ < |x — ¢
xo i [xg =& > [} —¢|

K(xi, x(€) = {

If [x; — &| = |x2 — &[, the payment is x; or x, with equal
probability.

Assuming x; < x,, the expected payoff may be written

K = x,P <§< 1;X2> 1+ x,P (£> XI;FXQ)

or equivalently

K = X + (Xl —X2)F <X1 —;XZ)



Minimax Theorem

A pair of strategies x; and xJ are said to be optimal if
K(X17X2*) > K(Xf7x2*) > K(Xik,X2)
for all xq, x,.

The minimax theorem (von Neumann, 1928) states that all
zero-sum games have optimal strategies (though they may be
pure or mixed).
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Brams-Merrill Theorem (1983)

Theorem

(1) If f'(0) exists and f(0) > O, then locally optimal strategies

are
i and x; !
X{ = ——— ==
! 2f(0) > 2f(0)
(2) If f is “sufficiently concentrated at the median”, then
these represent the unique globally optimal strategy pair.

Brams and Merrill also provide a weaker condition for global
optimality.

Both Normal and Uniform distributions satisfy the second
condition.
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Divergence of Global Optimal Pure Strategies
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Related Problems

Optimal Location of Candidates in Ideological Space
(Owens, Shapley 1989)
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Game-Theoretic Models of Tender Design

(Mazalov, Tokareva, 2014)
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Multiple-lssue FOA

When more than one issue is being arbitrated, two major
variants of FOA have been used (Farber, 1980):

m Issue by Issue: Each party submits a vector of final
offers and the arbitrator is free to compose a compromise
by selecting some offers from each party

m Whole Package: Both parties submit a vector of final
offers and the arbitrator must choose one or the other in
its entirety
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Challenges in Extending the Model

m How do we compare players’ valuation of settlement
bundles?

m How do we model the uncertainty of the arbitrator’s
opinion?

How does the arbitrator measure “closeness” ?

How do we handle qualitative issues in dispute?
What if separate quantitative issues are not fungible?
Modeling risk aversion?

Extending to multiple players?
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The Multi-Issue Game Setting

m Players | and Il present final-offers a,b € RY
m Judge selects & ~ F as an ideal fair settlement.
m F is common knowledge.
m Judge uses reasonableness function

R(x,€) : R? x R — R to compare final-offers.
m Game is zero-sum.
m Payoff is

Zi aj R(a,E) > R(ba €)

K(a,bl§) = {Z/ bi R(a, &) < R(b,§)
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Choice of F and R

Distribution
Normal &~ N(u, ) (WLOG, assume p = 0)
Uniform & ~ Unif (x5_;[—aj, aj]), where a; > 0
Criterion Reasonableness Function
Net Offer  Ruo(x,&) = ‘ZJ X — &
L Ri(x, &) = =30, I — &
L Ri.(x,8) = —max; {|x; — &1}
L, Ri,(x,€) = =30, % — &
L, Ri,(x, &) = Z (35— &)?
Mahalanobis Ry(x,&) = —(x — &)} (x — &)
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2NL, Circles

1/p
DLp X y (Z |X, y1|p)

EEERGR

p=64

“Circles” and Midset curves under Minkowski metrics (L)
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2NLy, 2NLy, 2NL,

Theorem

In 2NLy, 2NL, or 2NL, if pure optimal strategies exist for
Players i = 1,2 then they are given by

O y7) = ((=1)x", (=1)'x")

\/27r(a)2< +2poyoy + 02)
where x* = 2 .
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2NL; Proof Sketch

As it is sub-optimal for either player to choose a pure strategy
off the line y = x, the game reduces to the one-dimensional

case.
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2NL, Local Optimality

Theorem

24302 302402

4a'xayy y 4UX0'yy } The pure
strategy pair in the previous theorem is locally optimal.

In 2NL,, suppose p > max{ —

Because Midy,[a,b] is a straight line, we can essentially reduce
the dimension of F.
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2NL, Payoff Function

Let (£,m) ~ N(0,X) be the opinion of the arbitrator, where

2

2
Oy  pPOxOy
poxoy O,

Gi(a,b) = {(x, V)| —x)* + (11— ¥)* < e —x)*+ (2 —¥)*}
and G,(a, b) defined similarly.

'Di - P((fﬂ?) S Ci(a7b))

Assuming a # b, the expected payoff

K(a,b) = (x1 + y1)P1 + (X2 + y2) P2
may be written
K(a,b) = (2 + y2) + (1 + y1 — %2 — y2) P1.
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2NL; Local Optimality Proof Overview cont.

Express P; one-dimensionally:

Pi=P((a—&>+(1—n)’<(e—8’+0—-n)?7 (1)

2 _ 2 _ 2
_P<(X2—X1)§+(yz—)’1)77<X2+y2 2X1 yl) )

= P(Z < z2) (3)

where ) ) ) )
;= X5+ Y, —X{ — i (4)
2y/(b—a)"X(b—a)

we may write
K(a,b) = e +y2) + (a+y—x—y)®(z) (5

where ®(z) is the standard Gaussian cdf.
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2NL; Local Optimality Proof Overview cont.

By solving the system of first-order equations

d d d d
L Ky = 2K Klag = — K
dxq T dn T dy,

a* b* — 0

a*bx — ——
dX2

we arrive at the unique a*, b* given in the theorem. It is
straightforward to verify that the second order condition holds
provided

o +30; 30+ 05}

40,0, = 4doyo,

p > max{—
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2NL, Global Optimality

Theorem

If p > 0, the solution points a*, b* given in the previous
theorem are globally optimal.

In other words, K(a,b*) > 0Va € R?, with equality only when
a=a".

Thus players need not consider mixed strategies. The proof
relies on a geometric interpretation of the players’ strategies.
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2NL, Global Optimality Proof Overview

x*, ")

(
z>0

2% — ¢ =y
2,/(b" —a)Tx(b* —a)

zx 0
(—a*, —x")

2<0
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2NL, Global Optimality: Proof Overview cont.

If K(a,b*) <0 then x; + y; < 0 and either

X2 +y2<2x? or x4y < —2x"
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2NL, Global Optimality: Proof Overview cont.

(%, 2%)

1
K(a,b) =2x"+ - (a+y —2x) =2 +xi+y 20

when z = 0, with equality only when a = (—x*, —x*).
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2NL, Global Optimality: Proof Overview cont.

Against Player Il's strategy b* = (x*, x*), any pure strategy
a = (x1,y1) may be represented as

a(r,0) = (x* + rcosf,x* + rsinf).

30/60



2NL, Global Optimality: Polar Representation

Letting t(0) = —cosf — sin 6,

K(a,b") = 2x* — rt(0)®(z)

So K < 0 is equivalent to

®(z) > = £(r,0)

rt(0)
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2NL, Global Optimality: Two Tricks

To avoid the difficulties inherent in ®(z), we use two tricks:
(1) For z < 0, the normal cdf is bounded by the sigmoidal

1
1+ exp (—\/§z>

(2) For z > 0, by its concavity, (z) < y(z), the line tangent
atz=20

d(z) <
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2NL, Global Optimality: Proof Overview cont.

For fixed 6 € [%T”, 7—”}:

>0 <0
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It may come as no surprise that the arbitrated outcome using
whole Package has a higher variance than Issue-By-Issue.

Theorem

The expected payoff is zero under both Issue-by-Issue and
Whole-Package variants. If both player play optimally then the
variances of the awards are 5(o2 + 07) and

2(0% 4 2posoy + o)) respectively.
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2UL, - Globally Optimal Pure Strategies

Suppose £ is drawn uniformly at random from

= :=[-a,a] x [-f, 5], where WLOG 0 < o < f3, and the
judge uses the L, metric.

Theorem

In 2ULy, the strategy pair a* = (—2,-5) 'b* = (£,5) is the
unique globally optimal strategy pair.

To prove this, we let Player Il play b* and show that the
expected payoff is minimized only when Player | plays a*.
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2UL, Proof Case 1

In the first case, we i
. T
can show directly v,
that the payoff
function is minimized

only at a = a*, which
lies in this region.
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2UL, Proof Case 2

Here we parameterize
the strategy of Player
| along line segments
by slope m and

A € [0,1], and show
that the payoff
function is a
decreasing function of
A, and on the
boundary the payoff
is positive.
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2UL, Proof Case 3

We parameterize the ’

strategy by p € [.5,1] bxj
(i.e. P;) and

X € [0,2a] (the
length of the upper
boundary of () to
show there is no local
minima.
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2UL, Proof Case 4

The final case is ’

handled directly; it is b~j
shown by the first
order condition that
no minimum to the

payoff function exists
in this region.
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Nash Equilibrium

In non-zero sum games, the most popular solution concept is
the Nash equilibrium.

Let x; € S; be the strategy of Player i from strategy space /.
The reward functions are Ki(xi, ..., x,). A strategy profile

*

X{,...,x; is a Nash equilibrium if for each player i,

Ki(xi, xZ;) < Ki(x)

In other words, knowing the strategy x7, X3, ..., X of the
other players, player i has no incentive to deviate from x.
Every continuous game with compact strategy spaces and
continuous utility functions are guaranteed a Nash equilibrium
(pure or mixed).
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Interpleader

In 1972, Ferdinand Marcos, then the President of the Republic
of the Philippines, deposited approximately $2 million with
Merrill Lynch in New York City. That money sat in a Merrill
Lynch account for the next thirty-odd years, growing to
approximately $33.8 million worth of cash and securities. By
2000, a number of claimants to Marcos's estate had come
knocking, so Merrill Lynch filed an interpleader to determine
who should get the money.
https://www.casemine.com/judgement/us/591465abadd7b049342906e8

A dispute such as this between 3 or more parties may be
modeled by an N-player arbitration game.
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Generalize to N players

A unit must be split between the players. Each player i
chooses a vector x' € AN, where
AN = {x|x € RV 3" x; = 1,x > 0}. Suppose each player i

supplies evidence of strength \; > 0 in her favor to the judge.
If A; = 0 then the player has supplied no evidence in her favor.
Suppose that based on this evidence the judge decides on a

fair split of the unit award. Let & = (&1,&,, ..., &n) be the fair
split, where £ € AN,
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Dirichlet Distribution

Assume that it is common knowledge among the players that
& will be drawn from a Dirichlet distribution with parameter
a = (aq,...,ay), where a; = \; + 1.. The density function is

"= "5la)

Where B(a) is a normalizing constant.

Dirichlet(1,1,1) Dirichlet(2,2,2) Dirichlet(10,10,10) Dirichlet(2,2,10)

»
L

44 /60



Voronoi Cells in the Simplex

Given the N final-offers, we may partition AN into N convex
Voronoi cells. Call these V; fori=1,... N.

(0,0, 1)

(1,0,0)
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If \; = 0 for all players, the probability distribution is uniform
over the simplex. In this case, the payoff function is

N

Ki(x, ..., x") = _I,ZXJ’// NI\/Q_N
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Theorem

Let N > 3. Players 2,..., N demand (3 and offer ; L B to the
opponents. Player 1 determ/nes to demand «. Then P1 is

maximized when Player 1 offers ﬁ to each other player.

This can be proven inductively, for in the (N — 1)-simplex an
equal split maximizes the volume of the N — 1 faces adjacent
0 (1,0,...,0) which are (N — 2)-simplices, and maximizes

the distance from (1,0,...,0) to the opposite vertex.
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The harmonic numbers Hy are defined as the sum of the
inverses of the first n integers:

1 1 1
Hy=1+Z4++ 4=
2 3 n
The harmonic numbers roughly approximate the natural
logarithm.

Theorem

For an N player FOA game where & is chosen uniformly at
random, assuming the conjecture, a pure equilibrium strategy
N—1
N—1
remaining portion equally to the other players.

is for each player to demand for himself and offer the

48 /60



Relative Greed Grows Logarithmically

The relative greed of a player i demanding x; would be

g =1 = Nx

=[] X%

When playing the pure equilibrium strategy, the relative greed
g = g Hn-1 = In(N — 1). This is to say, although in
equilibrium players demand less as the number of players
increases, their relative greed actually increases logarithmically
with the number of players.
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Symmetric Dirichlet Distributions

Suppose each player gives the same level of evidence in his
favor. In other words, A\; = --- = Ay = A. It would make
sense that the increasing concentration of probability at the
mode, (%, cee %) would cause the Player's equilibrium offers
to converge, but is this the case? And at what rate?

In the 2 player case, the game becomes zero-sum with

& ~ Beta(A + 1,\ + 1), we know that the optimal pure

strategy for each player is to demand

1 T(A+1)%

2 2r2A+2)

*
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Convergence to the mean as )\ increases
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Relative excess as \ increases

wnuqiinba 18 puBWap SSIIXd dAIIE[D.
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This suggests that we may be able to approximate the Nash
equilibrium for any N and A

1 ValT(A+1)Hy-1

NN~ o H(N—1)
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Non-Zero Sum 2-Issue 2-Player FOA

We will not assume the issues are fungible or even in the same
units. Because both players know the judge chooses a fair
settlement from F, they may standardize their offers;

(xi,yi) = (ﬁ ﬁ)

)
Ox Oy

So effectively we may assume that the judge chooses (&, 7)
from N(0, %) with
_| Lo
= {P 1 ]
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The players value a settlement (x, y) as vi(x,y) = a;x + By,
where a1, 51 < 0, ap, 8> > 0. However, as we may scale the
payoff functions without affecting the game, we may as well
assume that f; = —1 and (5, = 1.

Thus
Ki(a,b) = aix, — yo + (a1(x1 — x2) — (1 — y2))®(2)  (6)

Kx(a,b) = aoxy + y1 + (042(X2 —x1)+ (y2 — Y1))¢(—Z) (7)
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Possible Pure Equilibria
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Improvement through negotiation
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Thank You
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