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Negotiation, Threats and Arbitration

An employer and workers’ union enter negotiations over
wages.

A strike is an expensive alternative for both parties, so the
threat to strike is a motivator for agreement.

Should a strike be impossible (for legal or practical reasons)
the parties may be contractually obligated to receive a ruling
by an judge acting as arbitrator. Such arbitration is known as
interest arbitration.
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Conventional Arbitration

Under conventional arbitration, the judge takes both sides
into consideration and can craft a binding compromise.

Problems:

Chilling Effect

Incompatible with bargaining?

Quality of arbitrated outcomes
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Optimal Strategies and Value

In a zero-sum game, where K (x1, x2) is received by player II
from Player I, a pair of strategies exist (x∗1 , x

∗
2 ) is called an

optimal pair if
K (x1, x

∗
2 ) ≥ v

and
K (x∗1 , x2) ≤ v

for some v ∈ R. Such a v is called the value of the game.
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The Chilling Effect Game

The Employer (I, minimizer) and Workers (II, maximizer)
submit final offers of a wage increase xi ∈ [0, 1] to the judge.

The judge will compromise and rule

x = αx1 + (1− α)x2,

where α ∈ (0, 1) fixed but unknown to players.

Regardless of α, the unique optimal strategies are

x∗1 = 0, x∗2 = 1.
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Final-Offer Arbitration

Under Final-Offer Arbitration [Stevens, 1966], the judge
examines the final offers of both parties and must pick one
with no compromise.

Proposed outcomes:

Combat the Chilling Effect (convergence)

Motivate Concessions (avoid arbitration)
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Certainty of Arbitrator Behavior

Suppose the Employer and Workers are engaged in a FOA
game: They choose x1, x2 ∈ [0, 1], and the judge chooses
whichever is closer to x .

If players are certain of the judge’s opinion x then the unique
optimal strategy pair is

x∗1 = x∗2 = x

(Chatterjee, 1981).

A more interesting game must model uncertainty.
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Notes on Final-Offer Arbitration

Beyond the actual cost of arbitration, the risk of
uncertainty should (theoretically) motivate players to
reach agreement (Stevens 1966).

Since 1970s, FOA and its variants have been used across
the world.

Under uncertainty, players strike a balance:

extreme offer: big gain but unlikely win
moderate offer: smaller gain but more likely win
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FOA In Practice

Also known as Pendulum Arbitration and Baseball
Arbitration.

A variant is MEDLOA (Mediation with Last Offer
Arbitration)

The Trial of Socrates

Adopted in Many states (Michigan, Wisconsin 1970s) in
the public sector (e.g. police, firefighters)

Major League Baseball after 1972 strike

Chile’s 1979 Labor Reform

Railway shipping in Canada
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Model for FOA [Brams-Merrill, 1983]

Player I (the minimizer) and Player II (the maximizer) each
select a final offer. The arbitrator has an opinion of what he
considers fair, and sides with whichever player’s offer is closest
(in absolute value) to the fair settlement.

Assumptions:

As far as players are concerned, the fair settlement is
chosen randomly from a distribution described by density
function f .

f is common knowledge.

WLOG, the median of the distribution is 0.

The game is zero-sum.
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Optimal Strategies for FOA

Say players choose x1 and x2, while the arbitrator chooses ξ.

The payment made by Player I to Player II is

K (x1, x2|ξ) =

{
x1 if |x1 − ξ| < |x2 − ξ|
x2 if |x1 − ξ| > |x2 − ξ|

If |x1 − ξ| = |x2 − ξ| then the judge may flip a coin to decide
between x1 and x2, but we shall assume this happens with
probability 0.
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Minimax Theorem

Theorem

If X1 and X2 are compact subsets of Euclidean space and if
K (x1, x2) is a continuous function of x1 ∈ X1 and x2 ∈ X2,
then the game has a value v , and there exist optimal (mixed)
strategies for the players P∗1 ∈ ∆(X1) and P∗2 ∈ ∆(X2) such
that

K (P∗1 ,P2) ≤ v ≤ K (P1,P
∗
2 )

for all P1 ∈ ∆(X1) and P2 ∈ ∆(X2).

Here ∆(S) is the set of all probability distributions over S .
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Locally and Globally Optimal Pure Strategies

A pair of pure strategies x∗1 , x
∗
2 are locally optimal if ∃ε > 0

such that, for all x1 ∈ Nε(x
∗
1 ), x2 ∈ Nε(x

∗
2 )

K (x∗1 , x2) ≤ K (x∗1 , x
∗
2 ) ≤ K (x1, x

∗
2 )

The pair is said to be globally optimal if the inequality is
true for all x1 ∈ X1, x2 ∈ X2.
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Brams-Merrill Theorem (1983)

Brams-Merrill provide a stronger result for the single-issue
game; optimal pure strategies exist under many
circumstances.

Theorem

(1) If f ′(0) exists and f (0) > 0, then locally optimal strategies
are

x∗1 = − 1

2f (0)
and x∗2 =

1

2f (0)
.

(2) If f is “sufficiently concentrated at the median”, then
these represent the unique globally optimal strategy pair.
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Sufficient Concentration at the Median

A sufficient condition for global optimality is:

f (x) ≤ f (0) + 4f 2(0)|x | for |x | ≤ 1

4f (0)
,

and ∃c1, c2 with −∞ ≤ c1 ≤ 0 ≤ c2 ≤ ∞ s.t.

f (x) ≥ f (0)e−2f (0)|x |, c1 ≤ x ≤ c2

f (x) ≤ f (0)e−2f (0)|x |, x ≤ c1 and x ≥ c2.
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Payoff Function

Consider the expected payment,

K (x1, x2) = x1P(|x1 − ξ| < |x2 − ξ|) + x2P(|x1 − ξ| > |x2 − ξ|)

If we assume x1 < x2,

K (x1, x2) = x1P

(
ξ <

x1 + x2
2

)
+ x2P

(
ξ >

x1 + x2
2

)
Letting F (x) = P(ξ < x), we may write

K (x1, x2) = x1F

(
x1 + x2

2

)
+ x2

[
1− F

(
x1 + x2

2

)]
= (x1 − x2)F

(
x1 + x2

2

)
+ x2
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Pure Optimal Strategies

If optimal pure strategies x∗1 , x
∗
2 exist, it must be that

K (x1, x
∗
2 )

is minimized when x1 = x∗1 and

K (x∗1 , x2)

is maximized when x2 = x∗2 .

Suppose that pure optimal strategies do exist, and we derive
them as follows:
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Strategy optimization

Payoff Function

K (x1, x2) = (x1 − x2)F

(
x1 + x2

2

)
+ x2

Player I chooses x∗1 to minimize K , so d
dx1

K (x1, x
∗
2 ) = 0 when

x1 = x∗1 , that is

x∗1 − x∗2
2

f

(
x∗1 + x∗2

2

)
+ F

(
x∗1 + x∗2

2

)
= 0 (1)

Player II chooses x∗2 to maximize K , so d
dx2

K (x∗1 , x2) = 0 when
x2 = x∗2 , that is

x∗1 − x∗2
2

f

(
x∗1 + x∗2

2

)
− F

(
x∗1 + x∗2

2

)
+ 1 = 0 (2)
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Deriving pure strategy equilibria

Subtracting (2) from (1) we get

F

(
x∗1 + x∗2

2

)
=

1

2
⇒ x∗1 + x∗2

2
= 0

Adding (2) to (1) we get

f (0) =
1

x∗2 − x∗1
=

1

2x∗2
= − 1

2x∗1

Thus

x∗1 = − 1

2f (0)
, x∗2 =

1

2f (0)
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Divergence of Global Optimal Pure Strategies
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Extended Single-Issue Model

Suppose the arbitrator is of one of two types: ξ = −1 or +1
with equal probability.

No pure optimal strategies exist. If Players restrict themselves
to discrete mixed strategies over integers, many mixed
strategies exist. For example:

x1 =

{
−1 w.p. α

−3 w.p. 1− α
x2 =

{
+1 w.p. β

+3 w.p. 1− β

For any α, β ∈ [1
3
, 1
2
] (Brams 1983).
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2 Point Distribution, Cont.

If players can choose any mixed strategy, things get more
complicated. Letting B =

√
5− 2, Player II has an optimal

mixed strategy (Kilgour, 1994) given by the continuous density
function

f ∗2 (b) =

{
(B+1)1/2

2(b+1)3/2
B ≤ b ≤ B + 2

(B+3)1/2

2(b−1)3/2 B + 1 < b ≤ B + 4
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Asymmetric FOA Variants

If one player is risk-averse, he tends to make more
moderate offers and win more often (Curry 1993, Kilgour
1994).

The above agrees with empirical evidence (Ashenfelter
and Bloom, 1984)

Dickinson (2006) studied a model where disputants do
not share a common belief of the arbitrator’s behavior.
Optimism leads to the Chilling Effect
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Multiple-Issue FOA

When more than one issue is being arbitrated, two major
variants of FOA have been used [Farber, 1980]:

Issue by Issue: Each party submits a vector of final
offers and the arbitrator is free to compose a compromise
by selecting some offers from each party

Whole Package: Both parties submit a vector of final
offers and the arbitrator must choose one or the other in
its entirety
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Extending the Model to Higher Dimensions

To extend the model, a number of questions must be
addressed:

How do players value settlement vectors?

How does the judge decided which vector is more
“reasonable”?

How do the players model uncertainty?

How are non-quantitative issues handled?
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Dual Issue FOA under Euclidean Distance

Two Issues, additive valuation, zero-sum, Euclidean distance
metric.

Theorem

Suppose ρ > max
{
−σ2

x+3σ2
y

4σxσy
,−3σ2

x+σ
2
y

4σxσy

}
. Let

x∗ =

√
2π(σ2

x + 2ρσxσy + σ2
y )

4

A locally optimal pure strategies pair is

a∗ = (−x∗,−x∗),b∗ = (x∗, x∗). (3)

If ρ > 0, the strategies are globally optimal.
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Open Questions

Alternative Decision Criteria/Distance Measures

Alternative Package Valuations

Non-zero sum extension

Alternative Uncertainty Models

Generalize to d issues

Generalize to N players
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Alternative Distance Measures: Lp Metrics

Lp distance between points x and y is

DLp(x, y) =

(
d∑

i=1

(xi − yi)
p

)1/p

“circles” and midsets between two points, p = 1, 1.4, 2, 3, 64

Theorem

For the Dual-Issue FOA using Lp distance (p ≥ 1), if pure
strategies exist then they must be a∗,b∗ given previously.
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Alternative Uncertainty Model: Uniform

Theorem

In a 2-Issue FOA game where
(ξ, η) ∼ Unif ([−α, α]× [−β, β]) and β ≥ α, if pure optimal
strategies exist then they are given by

x∗1 =

(
−β

2
,−β

2

)
, x∗2 =

(
β

2
,
β

2

)

Conjecture: They do exist and are globally optimal.
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Generalize to N players

A unit must be split between the players. Players 1, . . . ,N
choose Pi ∈ ∆N = {x ∈ RN |

∑N
i=1 xi = 1, xi ≥ 0}. The judge

chooses a fair split ξ ∈ ∆N and chooses whichever Pi is closest
to ξ in Euclidean distance.

Theorem

For N = 3, demanding 3
4

for oneself and offering 1
8

each other
player is a pure Nash equilibrium.
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Thank You
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