
Training-Time Optimization of a Budgeted

Booster

Yi Huang *Brian Powers Lev Reyzin

University of Illinois at Chicago

{yhuang,bpower6,lreyzin}@math.uic.edu

July 30, 2015

Motivation: Making Predictions with a Budget

We must classify a test example but can’t afford to know all
the facts.

Features may be costly to observe

Time,

Money,

Energy,

Health risk

Motivating scenarios:

Medical diagnosis,

Internet applications,

Mobile devices

Feature-Efficient Learners

Goal: Supervised Learning Algorithm with:

Budget B > 0

Feature costs C : [i , . . . , n]→ R+

Limited by budget at test time

We call such a learner feature-efficient.

A Sampling of Related Work

Sequential analysis: When to stop sequential clinical
trials
[Wald 47] and [Chernoff ’72]

PAC learning with incomplete features
[Ben-David-Dichterman ’93] and [Greiner et al. ’02]

Robust prediction with missing features
[Globerson-Roweis ’06]

Learning linear functions by few features
[Cesa-Bianchi et al. ’10]

Incorporating feature costs in CART impurity
[Xu et al. ’12]

MDPs for feature selection [He et al. ’13]

Idea: A Feature-Efficient Boosting Algorithm

An approach using Random Sampling [Reyzin ’11]:

1 Run AdaBoost to produce an ensemble predictor.

2 Sample from ensemble randomly until budget is reached.

3 Take importance-weighted average vote of samples.

Performance converges to that of AdaBoost as B →∞...

But is there room for improvement?

Budgeted Training

Yes!

“Budgeted Training” uses the following principles:

Use the budget to optimize training.

Stop training early when budget runs out.

The resulting predictor will be feature-efficient.

Modify base learner selection when costs are non-uniform.

Algorithm: AdaBoost

AdaBoost (S) where: S ⊂ X × {−1,+1}, B > 0,
C : [n]→ R+

1: given: (x1, y1), ..., (xm, ym) ∈ S
2: initialize D1(i) = 1

m
, B1 = B

3: for t = 1, . . . ,T do
4: train base learner using distribution Dt .

5: get ht ∈ H : X → {−1,+1}.
if the total cost of the unpaid features of ht exceeds Bt
then

set T = t − 1 and end for
else set Bt+1 as Bt minus the total cost of the unpaid
features of ht , marking them as paid

6: choose αt = 1
2
ln1+γt

1−γt , where γt =
∑

i Dt(i)yiht(xi).

7: update Dt+1(i) = Dt(i) exp(αtyiht(xi))/Zt ,
8: end for
9: output the final classifier H(x) = sign

(∑T
t=1 αtht(x)

)

Algorithm: AdaBoost with Budgeted Training

AdaBoostBT(S,B,C) where: S ⊂ X × {−1,+1}, B > 0,
C : [n]→ R+

1: given: (x1, y1), ..., (xm, ym) ∈ S
2: initialize D1(i) = 1

m
, B1 = B

3: for t = 1, . . . ,T do
4: train base learner using distribution Dt .

5: get ht ∈ H : X → {−1,+1} .

6: if the total cost of the unpaid features of ht exceeds Bt
then

7: set T = t − 1 and end for
8: else set Bt+1 as Bt minus the total cost of the unpaid

features of ht , marking them as paid
9: choose αt = 1

2
ln1+γt

1−γt , where γt =
∑

i Dt(i)yiht(xi).

10: update Dt+1(i) = Dt(i) exp(αtyiht(xi))/Zt ,
11: end for
12: output the final classifier H(x) = sign

(∑T
t=1 αtht(x)

)

Selection of Weak Learners

In AdaBoost, weak learners are selected to drive down the
training error bound [Freund & Schapire ’97]

P̂r[H(x) 6= y] ≤
T∏
t=1

√
1− γ2t .

If costs are uniform (T is known), choose the weak
learner that maximizes |γt |.
If costs are non-uniform:

High edges give smaller terms, but
Low costs allow for more terms in the product.
How should we trade-off edge vs cost?

A Greedy Optimization

To estimate T we assume future rounds will be like the
current.

So T = B
c(h)

.

Then the selection becomes

ht = argmin
h∈H

(1− γt(h)2)
1

c(h) . (1)

A Smoother Optimization

Alternate estimate of T based on milder assumption: The
cost of future rounds will be the average cost so far.

The resulting selection rule is

ht = argmin
h∈H

(
1− γt(h)2

) 1
(B−Bt)+c(h) . (2)

Idea: Using average cost should produce a smoother
optimization.

A Look at SpeedBoost

SpeedBoost [Grubb-Bagnell ’12] produces a feature-efficient
ensemble in another way.

An objective R is chosen (e.g. a loss function).

While the budget allows:
A Weak learner h and weight α are chosen to maximize

R(fi−1)− R(fi−1 + αh)

c(h)
.

Experimental Results: C ∼ Unif (0, 2)

Budget on horizontal axis, test error rate on vertical (AdaBoostRS
error on right). AdaBoost at T=400 as a benchmark.

Experimental Results: C ∼ Unif (0, 2)

Budget on horizontal axis, test error rate on vertical (AdaBoostRS
error on right). AdaBoost at T=400 as a benchmark.

Experimental Results: Real World Data

Observations

Budgeted training improves significantly on AdaBoostRS.

Modifying with Greedy and Smoothed optimizations tend
to yield additional improvements:

Greedy tends to win for small budgets.
Smoothed tends to win for larger budgets.

SpeedBoost and our Greedy Budgeted Training perform
almost identically.

There is an explanation using a Taylor series expansion.

Observations

Too many cheap features can kill Greedy Optimization.

Smoothed optimization avoids this trap, since cost
becomes less important as t →∞.

Both Greedy and Smoothed optimizations run a higher
risk of over-fitting than simply stopping early.

Future Work

Improve optimization for cost distributions with few cheap
features.

Consider adversarial cost models.

Refine optimizations by considering the complexity term
in AdaBoost’s generalization error bound.

Study making other machine learning algorithms
feature-efficient through budgeted training.

Thank you

Thank you!

Visit my poster at Panel 4

