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Motivation

Observing features may incur a cost

Time, Money, Risk

Medical diagnosis

Internet applications

We need to classify test examples on a budget.



Feature-Efficient Learners

Goal: Supervized Learning with:

budget B > 0

feature costs C : [i , . . . , n]→ R+

Limited by budget at test time

We call such a learner feature-efficient



Related Work

Determining when to stop sequential clinical trials
Wald (’47)

PAC-learnability with incomplete features
Ben-David and Dichterman (’93), Greiner (’02)

Robust predictors resilient to missing/corrupted features
Globerson and Roweis (’06)

Linear Predictor only accessing few features per example
Cesa-Bianchi (’10)

Dynamic feature selection using an MDP
He et al. (’12)

Feature-efficient prediction by randomly sampling from a
full ensemble

Reyzin (’11)



Reyzin’s AdaBoostRS

1 Run AdaBoost to produce an ensemble predictor

2 Sample from ensemble randomly until budget is reached

3 Take unweighted average vote of samples



An Obvious Solution

There’s a simpler alternative:

Stop boosting early!



Our Method: Budgeted Training

Modify AdaBoost to stop training early when budget runs out.
The resulting predictor will be feature-efficient.
Modify base learner selection when costs are non-uniform.



Algorithm: AdaBoost

AdaBoost (S ) where: S ⊂ X × {−1,+1}, B > 0,
C : [n]→ R+

1: given: (x1, y1), ..., (xm, ym) ∈ S
2: initialize D1(i) = 1

m
, B1 = B

3: for t = 1, . . . ,T do
4: train base learner using distribution Dt .

5: get ht ∈ H : X → {−1,+1}.
if the total cost of the unpaid features of ht exceeds Bt
then

set T = t − 1 and end for
else set Bt+1 as Bt minus the total cost of the unpaid
features of ht , marking them as paid

6: choose αt = 1
2
ln1+γt

1−γt , where γt =
∑

i Dt(i)yiht(xi).

7: update Dt+1(i) = Dt(i) exp(αtyiht(xi))/Zt ,
8: end for
9: output the final classifier H(x) = sign

(∑T
t=1 αtht(x)

)



Algorithm: AdaBoost with Budgeted Training

AdaBoostBT(S,B,C) where: S ⊂ X × {−1,+1}, B > 0,
C : [n]→ R+

1: given: (x1, y1), ..., (xm, ym) ∈ S
2: initialize D1(i) = 1

m
, B1 = B

3: for t = 1, . . . ,T do
4: train base learner using distribution Dt .

5: get ht ∈ H : X → {−1,+1} .

6: if the total cost of the unpaid features of ht exceeds Bt
then

7: set T = t − 1 and end for
8: else set Bt+1 as Bt minus the total cost of the unpaid

features of ht , marking them as paid
9: choose αt = 1

2
ln1+γt

1−γt , where γt =
∑

i Dt(i)yiht(xi).

10: update Dt+1(i) = Dt(i) exp(αtyiht(xi))/Zt ,
11: end for
12: output the final classifier H(x) = sign

(∑T
t=1 αtht(x)

)



Optimizing for Non-Uniform Costs

AdaBoost normally choses a base learner that maximizes
γt (i.e. minimizes error rate)

What about non-uniform costs?
How should cost influence base learner selection?



Modified Optimization 1

Training error of AdaBoost is bounded by
[Freund & Schapire ’97]

P̂r[H(x) 6= y ] ≤
T∏
t=1

√
1− γ2t

Driven down by both high γts and high T (ie low costs)

To estimate T we may make an assumption

If in round t we choose hypothesis ht, assume we
can find base learners with same c on future
rounds.



Modified Optimization 1: Deriving Tradeoff

Minimize training error bound

minimize
T∏
t=1

√
1− γ2t



Modified Optimization 1: Deriving Tradeoff

If all γi = γt(h)

minimize
(
1− γt(h)2

)T
2



Modified Optimization 1: Deriving Tradeoff

T = B
c(h)

by assumption

minimize (1− γt(h)2)
B

2c(h)



Modified Optimization 1: Deriving Tradeoff

B
2

can be removed from exponent

minimize (1− γt(h)2)
1

c(h)



Modified Optimization 1

We may now choose a base learner satisfying

ht = argminh∈H

(
(1− γt(h)2)

1
c(h)

)
(1)



Tradeoff Contours

Contour Plot of (1− γ2)
1
c



Modified Optimization 2

Alternate estimate of T based on milder assumption

If in round t we choose hypothesis ht, assume we
can find base learners with c equal to the average
base learner cost.

Average cost of base learners is (B−Bt)+c
t

Choose a base learner satisfying

ht = argminh∈H

((
1− γt(h)2

) 1
(B−Bt )+c(h)

)
(2)

Average cost should produce a smoother optimization



Experimental Results: C ∼ Unif (0, 2)



Experimental Results: C ∼ N(1, .25)



Compare to Decision Trees



Observations

Budgeted training improves significantly on AdaBoostRS

Modifying with optimizations 1 and 2 tend to yield
additional improvements

With non-uniform costs:

Optimization 1 tends to win for small budgets
Optimization 2 tends to win for larger budgets



Observations

Too many cheap features can kill optimization 1
(ionosphere, sonar, heart, ecoli)

Optimization 2 avoids this trap, since cost becomes less
important as t →∞

Both optimizations 1 and 2 run higher risk of over-fitting
than AdaBoostBT



Future Work

Improve optimization for cost distributions with few cheap
features

Consider adversarial cost models

Boost using weak learners other than decision stumps
(e.g. decision trees)

Extend our ideas to confidence-rated predictions
[Schapire & Singer ’99]

Refine optimizations by considering the complexity term
in AdaBoost’s generalization error bound

Study making other machine learning algorithms
feature-efficient through budgeted training
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Thank You



Appendix: AdaBoost Generalization Error Bound

Occam’s Razor bound gives us

generalization error ≤ training error + Õ

(√
dT

m

)

m is the number of training examples
T is the number of boosting rounds
d is the VC dimension of the base classifier


