
Training-Time Optimization of a Budgeted Booster

Yi Huang Brian Powers Lev Reyzin
Mathematics, Statistics, and Computer Science, University of Illinois at Chicago

{yhuang,bpower6,lreyzin}@math.uic.edu

Abstract

We consider the problem of feature efficient prediction – a setting where features
have costs, and the learner is limited by a budget constraint on the total cost of the
features it can examine in test time. We focus on solving this problem with boost-
ing by optimizing the choice of base learners in the training phase and stopping
the boosting process when the learner’s budget runs out. We experimentally show
that in the case of random costs, our method improves upon a previous approach
of Reyzin [8] of drawing as many random samples as the budget allows from a
trained AdaBoost ensemble.

1 Introduction

The problem of budgeted learning centers on questions around resource constraints imposed on a
traditional supervised learning algorithm. Here, we focus on the setting where a learner has ample
resources during training time, but is constrained by resources in predicting on new examples. In
particular, we assume that accessing the features of new examples is costly (with each feature having
its own cost to access it), and predictions must be made without running over a given budget. This
budget may or may not be known to the learner. Learners that adhere to such budget constraints are
sometimes called feature-efficient.

A classic motivation for this problem is the medical testing setting, where features correspond to
the results of tests that are often costly or even dangerous to perform. Diagnoses often need to be
made on incomplete information, and doctors must order tests thoughtfully in order to stay within
whatever budgets the world imposes.

Here, we focus on boosting methods, in particular AdaBoost, to make them feature-efficient pre-
dictors. This line of work was started by Reyzin [8], who introduced the algorithm AdaBoostRS,
a feature-efficient version of AdaBoost. While AdaBoostRS provably converges to the behavior
of AdaBoost as the feature budget increased, it only considers feature costs and budget at test
time. Reyzin left open the problem of whether optimizing during training can improve performance.
Here, we answer this question with a resounding yes, giving algorithms that clearly outperform
AdaBoostRS, especially when costs vary and budget limits are small.

Our approach relies mainly on two observations. The first is that when all features have equal costs
stopping the training of AdaBoost early, once the budget runs out, will outperform AdaBoostRS.
Second, when features have different costs, which is the setting that chiefly concerned Reyzin, one
can still run AdaBoost, but choose weak learners as to better trade-off their cost vs. contribution
to the performance of the ensemble. Combining these simple ideas yields our approach.

2 Past Work

Research on this problem goes back at least to Wald [10], who considered the problem of running a
clinical trial sequentially, only testing future patients if the validity of the hypothesis in question is
still sufficiently uncertain. This question belongs to the broader area of sequential analysis [3].

1



Ben-David and Dichterman [1] examined the learning theory behind learning using random partial
information from examples and discussed conditions for learning in their model. Greiner et al. [5]
also considered the problem of feature-efficient prediction, where a classifier must choose which
features to examine before predicting. They showed that a variant of PAC-learnability is still possible
even without access to the full feature set.

In related settings, Globerson and Roweis [4] looked at building robust predictors that are resilient
to corrupted or missing features. Cesa-Bianchi et al. [2] studied how to efficiently learn a linear pre-
dictor in the setting where the learner can access only a few features per example. And He et al. [6]
trained an MDP for this task, casting it as dynamic feature selection. In the area of boosting, Pelos-
sof et al. [7] analyzed how to speed up margin-based learning algorithms by stopping evaluation
when the outcome is close to certain. Sun and Zhou [9] also considered how to order base learner
evaluations so as to save prediction time.

However, our main motivation is the recent work of Reyzin [8], who tackled the feature-efficient
learning problem using ensemble predictors. He showed that sampling from a weights distribution
of an ensemble yields a budgeted learner with similar properties to the original ensemble, and he
tested this idea experimentally on AdaBoost. The goal of this paper is to improve on Reyzin’s
approach by incorporating the feature budget into the training phase.

3 AdaBoost and Feature Selection

Our goal in this paper is to produce an accurate classifier given a budget B and a set of m training
examples, each with n features and each feature with a cost via cost function C : [n] → R+.
Reyzin’s AdaBoostRS [8] takes the approach of ignoring feature cost during training, and then
randomly selecting hypotheses from ensemble produced by AdaBoost until the budget is reached.
Here we look at a different approach—to optimize the cost efficiency of boosting during training, so
the ensemble classifier that results is both relatively accurate and affordable.

One straightforward approach is to run AdaBoost, paying for the features of the weak learners
chosen every round, bookkeeping expenditures and the features used, until we cannot afford to
continue. In this case, we are simply stopping AdaBoost early. We call this algorithm the “ba-
sic” AdaBoostBT for Budgeted Training. Surprisingly, this albeit simple methodology produces
results that are significantly better than AdaBoostRS for both features with a uniform cost and
features with random cost across a plethora of datasets.

Algorithm 1 AdaBoostBT(S,B,C), where: S ⊂ X × {−1,+1}, B > 0, C : [i . . . n]→ R+

1: given: (x1, y1), ..., (xm, ym) ∈ S
2: initialize D1(i) =

1
m , B1 = B

3: for t = 1, . . . , T do
4: train base learner using distribution Dt.
5: get ht ∈ H : X → {−1,+1}.
6: if the total cost of the unpaid features of ht exceeds Bt then
7: set T = t− 1 and end for
8: else set Bt+1 as Bt minus the total cost of the unpaid features of ht, marking them as paid
9: choose αt = 1

2 ln 1+γt
1−γt , where γt =

∑
iDt(i)yiht(xi).

10: update Dt+1(i) = Dt(i) exp(αtyiht(xi))/Zt, where Zt is the normalization factor
11: end for
12: output the final classifier H(x) = sign

(∑T
t=1 αtht(x)

)
We note that, in AdaBoost, since training error is upper bounded by

∏T
t=1 Zt =

∏T
t=1

√
1− γ2t ,

at each round of boosting one typically greedily chooses the base learner that minimizes the quantity,
which is equivalent to choosing the weak learner that maximizes γt. One can simply choose ht in
step 5 of AdaBoostBT according to this rule, which amounts to stopping AdaBoost early if its
budget runs out. As we show in Section 4, this already yields an improvement over AdaBoostRS.

However, this approach is clearly suboptimal when costs are not uniform. Namely, it may some-
times be better to choose a worse-performing hypothesis if its cost is lower. Doing so may hurt the

2



algorithm on that current round, but allow it to afford to boost for longer, more than compensating
for the locally suboptimal choice.

The problem is that it is difficult to known exactly how many future rounds of boosting can be
afforded under most strategies. Hence, we can make the assumption that for a base learner that
costs c, we could afford Bt/c additional rounds of boosting under the simplified assumption that all
future rounds will incur the same cost and achieve the same γt as in the current round. In this case,
minimizing

∏T
t=1 Zt is equivalent to minimizing the quantity

ht = argminh∈H

(
(1− γt(h)2)

1
c(h)

)
, (1)

where γt(h) =
∑
iDt(i)yih(xi). and c(h) is the cost of the features used by h. This is our first

proposed criteria for modifying base learner selection in step 5 of AdaBoostBT.

There is a potential pitfall with this approach: if we mark every used feature down to cost 0 (since
we don’t re-pay for features), then the optimization will collapse since every base learner with cost
0 will be favored over all other base learners no matter how uninformative it is. We can obviate this
problem by considering the original cost during the selection, but not paying for used features again
while updating Bt, as is done in our Algorithm.

As optimizing according to Equation 1 makes a very aggressive assumption of future costs, we
consider a smoother optimization for our second approach. If in round t we were to select ht with
cost c, the average cost per round thus far is clearly (B−Bt)+c

t . Our second approach uses this
average cost t to estimate the number of additional rounds we are going to run. Specifically, in
step 5 of AdaBoostBT, we select a base learner according to

ht = argminh∈H

((
1− γt(h)2

) 1
(B−Bt)+c(h)

)
. (2)

4 Experimental Results and Discussion

For our experiments, we used data-sets from the UCI repository, as shown in Table 1. The features
and labels were collapsed into binary categories.

data set ocr17 ocr49 sonar census splice ecoli breast cancer heart ionosphere
num features 403 403 11196 131 240 356 82 371 8114
training size 1000 1000 100 1000 1000 200 500 100 300

test size 5000 5000 108 5000 2175 136 199 170 51

Table 1: Dataset sizes, and numbers of features, for training and test.

Experimental results, given in Figure 1, compare average generalization error rates over 20 trials,
each with a random selection of training examples. Features are given costs uniformly at random on
the interval [0, 2]. As a benchmark, AdaBoost was run for 500 rounds irrespective of budget.

The most apparent conclusion from our experiments is that it is not only possible to improve upon
AdaBoostRS by optimizing base learner selection during training, but the that improvement is
dramatic. Further modifications of the basic AdaBoostBT tend to yield additional improvements.

Optimizing AdaBoostBT according to Equation 1 often tends to perform better than the basic
AdaBoostBT for small budgets, but it chooses base learners quite aggressively - a low cost base
learner is extremely attractive at all rounds of boosting. This makes it possible that the algorithm
falls into a trap, as in the sonar and ionosphere data sets, where we have a huge number of features
(consequently, many features with cost close to zero). After 500 rounds of boosting, this approach
sill had not spent the budget of 5 because the same set of cheap features were re-used round after
round leading to a deficient classifier. Similar behavior is seen for the ecoli and heart datasets.

Using Equation 2 in AdaBoostBT avoids this trap by considering the average cost instead. The
appeal of cheap base learners is dampened as the boosting round increases, with its limiting behavior
to choose weak learners that maximize γ. Thus, we can see that using Equation 2, while tending to
perform worse than Equation 2 for low budgets, tends to exceed its accuracy for larger budgets.

One unintended drawback of both Equations 1 and 2 is that the selection of base learners by consider-
ing cost typically allows for many more rounds of boosting than AdaBoostBT. The final classifier

3



may suffer from over-fitting to the training data, and this can be seen in ecoli, breast cancer and heart
data sets where budgeted training algorithms outperform AdaBoost itself.

Figure 1: Experimental results comparing our approaches to AdaBoostRSusing 500 rounds of
boosting. Vertical scales are adjusted to make AdaBoostRS visible.

References
[1] Shai Ben-David and Eli Dichterman. Learning with restricted focus of attention. In COLT, pages 287–

296, New York, NY, USA, 1993. ACM.
[2] Nicolò Cesa-Bianchi, Shai Shalev-Shwartz, and Ohad Shamir. Efficient learning with partially observed

attributes. CoRR, abs/1004.4421, 2010.
[3] Herman Chernoff. Sequential Analysis and Optimal Design. SIAM, 1972.
[4] Amir Globerson and Sam T. Roweis. Nightmare at test time: robust learning by feature deletion. In

ICML, pages 353–360, 2006.
[5] Russell Greiner, Adam J. Grove, and Dan Roth. Learning cost-sensitive active classifiers. Artif. Intell.,

139(2):137–174, 2002.
[6] He He, Hal Daumé III, and Jason Eisner. Imitation learning by coaching. In NIPS, pages 3158–3166,

2012.
[7] Raphael Pelossof, Michael Jones, and Zhiliyang Ying. Speeding-up margin based learning via stochastic

curtailment. In ICML/COLT Budgeted Learning Workshop, Haifa, Israel, June 25 2010.
[8] Lev Reyzin. Boosting on a budget: Sampling for feature-efficient prediction. In ICML, pages 529–536,

2011.
[9] Peng Sun and Jie Zhou. Saving evaluation time for the decision function in boosting: Representation and

reordering base learner. In ICML, 2013.
[10] Abraham Wald. Sequential Analysis. Wiley, 1947.

4


	Introduction
	Past Work
	AdaBoost and Feature Selection
	Experimental Results and Discussion

