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For Example

Two cars approach an intersection...

Each driver can choose to drive (“Dare”) or stop (“Chicken”).

3 / 56



The Game of “Chicken”

We have four possible outcomes of our game

( 2 : Dare 2 : Chicken

1 : Dare Collision 2 Passes
1 : Chicken 1 Passes Both Stop

)
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The Game of “Chicken”

The game game with ordered pairs assigning rewards to
players:

( D C

D (0, 0) (7, 2)
C (2, 7) (6, 6)

)

Each player secretly commits to a strategy, then both act
simultaneously.
Finally each receives his component reward.

5 / 56



A General Bimatrix Games

In general, a 2-player finite game where players have m and n
strategies respectively, we may summarize the game as an
m × n “bimatrix”

(A,B) =


1 2 · · · n

1 (a11, b11) (a12, b12) · · · (a1n, b1n)
2 (a21, b21) (a22, b22) · · · (a2n, b2n)
...

...
...

. . .
...

m (am1, bm1) (am2, bm2) · · · (amn, bmn)


Let I = {1, · · · ,m} be the set of strategies for Player 1 (the
row player) and J = {1, · · · , n} the set of strategies for Player
2 (the column player).
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Finite Game in Normal Form

Definition

A finite game Γ in normal form may be defined as a triple
(N , S , u) where

N = {1, . . . , n} is the set of players

S = S1× · · · × Sn is the set of joint strategy profiles, Si is
the set of strategies available to player i

u : S → Rn is a utility function mapping each strategy
profile to a payoff vector
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A Solution for the Game

So is there a solution for the players?

John Nash (1951) proved the existence of equilibrium points
for all finite games, provided players allow for randomized
strategies.

In a Nash equilibrium, neither player has any incentive to
deviate assuming the other player does not.

Definition

A pair of probability vectors (x∗, y ∗) is a Nash equilibrium for
bimatrix game (A,B) if

u1(x , y ∗) ≤ u1(x∗, y ∗) ∀x ∈ I and u2(x∗, y) ≤ u2(x∗, y ∗) ∀y ∈ J
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Nash Equilibria for “Chicken”

( D C

D (0, 0) (7, 2)
C (2, 7) (6, 6)

)
There are three Nash equilibria for this game:

Two pure equilibria, (D,C) and (C,D)

One mixed equilibrium
((

1
3
, 2
3

)
,
(
1
3
, 2
3

))
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Formalizing the Coordinated Solution

A mediator makes a probability distribution over S known
to all players.

It randomly chooses an s ∈ S according to the
distribution and privately informs each player of his
component strategy.

If no player has an incentive to deviate knowing the other
players’ conditional distributions, the probability
distribution is self-enforcing.
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The Correlated Equilibrium

R. J. Aumann (1974) introduced correlated equilibrium.

Definition

A probability distribution µ over S is a correlated equilibrium if

∀i ∈ N ,∀si ∈ Si , ∀ti ∈ Si\{si}∑
s−i∈S−i

µ(s) [ui(s)− ui(ti , s−i)] ≥ 0

The linear form

hsi ,ti (µ) =
∑

s−i∈S−i

µ(s) [ui(s)− ui(ti , s−i)]

is an incentive constraint.
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First Proof of the Existence of CE

Aumann proved in 1974 that all games possess a correlated
equilibrium.

Proof.

A Nash equilibrium σ = (σ1, . . . , σn) is a correlated equilibrium
where

µ(s) =
∏
i∈N

σi(si)

and every game has a Nash equilibrium.
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The Correlated Equilibrium Set

The set of all correlated equilibria (C) is defined by the
following constraints:

µ(s) ≥ 0 ∀s ∈ S Non-negativity∑
s∈S

µ(s) = 1 Normalization

hsi ,ti (µ) ≥ 0 ∀i ∈ N , si 6= ti ∈ S Incentives

So C is a polytope (the convex hull of a finite set of extreme
points).
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Extreme Correlated Equilibria for “Chicken”

( D C

D (0, 0) (7, 2)
C (2, 7) (6, 6)

)

µCD =

[
0 0
1 0

]
µDC =

[
0 1
0 0

]
µN3 =

[
1/9 2/9
2/9 4/9

]
µC1 =

[
0 1/4

1/4 1/2

]
µC2 =

[
1/5 2/5
2/5 0

]
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The Geometric Relationship Between NE and CE

Hart and Schmeidler (1989) provided a new existence
proof using linear methods which does not rely on the
existence of Nash equilibria.

We have already established that the set of Nash
equilibria is a subset of C.

Raghavan and Evangelista (1996) have demonstrated
that in bimatrix games the extreme points of so-called
Nash sets (maximal convex sets of Nash equilibria) are
extreme correlated equilibria.

Nau et. al. (2004) have shown that in n-player games the
Nash equilibria all lie on the (relative) boundary of C.
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Model for basic FOA (Brams-Merrill, 1983)

Player I (the minimizer) and Player II (the maximizer) each
present a final offer. The arbitrator has an opinion of what he
considers fair, and sides with whichever player’s offer is closest
to the fair settlement.

Assumptions:

As far as players are concerned, the fair settlement is
chosen randomly from a distribution F with density
function f .

F is common knowledge.

WLOG, the median of the distribution is 0.

The game is zero-sum.
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Optimal Strategies for FOA

Say players choose x1 and x2, while the arbitrator chooses ξ.

The payment made by Player I to Player II is

K (x1, x2|ξ) =

{
x1 if |x1 − ξ| < |x2 − ξ|
x2 if |x1 − ξ| > |x2 − ξ|

If |x1 − ξ| = |x2 − ξ|, the payment is x1 or x2 with equal
probability.
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Brams-Merrill Theorem (1983)

Theorem

(1) If f ′(0) exists and f (0) > 0, then locally optimal strategies
are

x∗1 = − 1

2f (0)
and x∗2 =

1

2f (0)
.

(2) If f is “sufficiently concentrated at the median”, then
these represent the unique globally optimal strategy pair.

Brams and Merrill also provide a weaker condition for global
optimality.
Both Normal and Uniform distributions satisfy the second
condition.

18 / 56



Divergence of Global Optimal Pure Strategies

(Brams-Merrill, 1983)
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Multiple-Issue FOA

When more than one issue is being arbitrated, two major
variants of FOA have been used (Farber, 1980):

Issue by Issue: Each party submits a vector of final
offers and the arbitrator is free to compose a compromise
by selecting some offers from each party

Whole Package: Both parties submit a vector of final
offers and the arbitrator must choose one or the other in
its entirety

20 / 56



The Multi-Issue Game Setting

Players I and II present final-offers a,b ∈ Rd

Judge selects ξ ∼ F as an ideal fair settlement.

F is common knowledge.

Judge uses reasonableness function
R(x, ξ) : Rd × Rd → R to compare final-offers.

Game is zero-sum.

Payoff is

K (a,b|ξ) =

{∑
i ai R(a, ξ) > R(b, ξ)∑
i bi R(a, ξ) < R(b, ξ)
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Choice of F

Normal
ξ ∼ N (µ,Σ) (WLOG, assume µ = 0)

Uniform
ξ ∼ Unif

(
×d

j=1[−αj , αj ]
)
, where αj > 0
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Choice of R

Criterion Reasonableness Function

Net Offer RNO(x, ξ) = −
∣∣∣∑d

j=1 xj − ξj
∣∣∣

L1 RL1(x, ξ) = −
∑d

j=1 |xj − ξj |

L∞ RL∞(x, ξ) = −maxj {|xj − ξj |}

Lp RLp(x, ξ) = −
∑d

j=1 |xj − ξj |
p

L2 RL2(x, ξ) = −
∑d

j=1(xj − ξj)2

Mahalanobis RM(x, ξ) = −(x− ξ)′Σ−1(x− ξ)
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2NNO

Theorem

Any pure strategies from

S∗i =


x∗1 , (−1)i

√
2π(σ2

x + 2ρσxσy + σ2
y )

2
− x∗i

 : x∗i ∈ R


i = 1, 2 are independently optimal for Players I and II.

This is easily found as the game collapses to the one
dimensional case.
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2NL1, 2NL∞, 2NLp

Theorem

In 2NL1, 2NL∞ or 2NLp if pure optimal strategies exist for
Players i = 1, 2 then they are given by

(x∗i , y
∗
i ) =

(
(−1)ix∗, (−1)ix∗

)
,

where x∗ =

√
2π(σ2

x + 2ρσxσy + σ2
y )

4
.
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2NL1 Proof Sketch

As it is sub-optimal for either player to choose a pure strategy
off the line y = x , the game reduces to the one-dimensional
case.
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2NL∞ Proof Sketch

As it is sub-optimal for either player to choose a pure strategy
off the line y = x , the game reduces to the one-dimensional
case.
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2NLp Circles

DLp(x, y) =

(
d∑

i=1

|xi − yi |p
)1/p

“Circles” and Midset curves under Minkowski metrics (Lp)
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2NLp Proof Sketch

As it is sub-optimal for either player to choose a pure strategy
off the line y = x , the game reduces to the one-dimensional
case.
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2NLp Proof Sketch (cont.)

This is because the midset curve between two such points
−x∗, x∗ in Lp nowhere has a derivative equal to −1.
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2NL2 Local Optimality

Theorem

In 2NL2, suppose ρ > max
{
−σ2

x+3σ2
y

4σxσy
,−3σ2

x+σ
2
y

4σxσy

}
. The pure

strategy pair in the previous theorem is locally optimal.

Because MidL2[a,b] is a straight line, we can essentially reduce
the dimension of F .
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2NL2 Payoff Function

Let (ξ, η) ∼ N (0,Σ) be the opinion of the arbitrator, where

Σ =

[
σ2
x ρσxσy

ρσxσy σ2
y

]
C1(a,b) = {(x , y)|(x1−x)2 +(y1−y)2 < (x2−x)2 +(y2−y)2}
and C2(a,b) defined similarly.
Pi = P

(
(ξ, η) ∈ Ci(a,b)

)
Assuming a 6= b, the expected payoff

K (a,b) = (x1 + y1)P1 + (x2 + y2)P2

may be written

K (a,b) = (x2 + y2) + (x1 + y1 − x2 − y2)P1.
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2NL2 Local Optimality Proof Overview cont.

Express P1 one-dimensionally:

P1 = P
(
(x1 − ξ)2 + (y1 − η)2 < (x2 − ξ)2 + (y2 − η)2

)
(1)

= P

(
(x2 − x1)ξ + (y2 − y1)η <

x22 + y 2
2 − x21 − y 2

1

2

)
(2)

= P(Z < z) (3)

where

z =
x22 + y 2

2 − x21 − y 2
1

2
√

(b− a)TΣ(b− a)
(4)

we may write

K (a,b) = (x2 + y2) + (x1 + y1 − x2 − y2)Φ(z) (5)

where Φ(z) is the standard Gaussian cdf.
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2NL2 Local Optimality Proof Overview cont.

By solving the system of first-order equations

d

dx1
K |a∗,b∗ =

d

dy1
K |a∗,b∗ =

d

dx2
K |a∗,b∗ =

d

dy2
K |a∗,b∗ = 0

we arrive at the unique a∗,b∗ given in the theorem. It is
straightforward to verify that the second order condition holds
provided

ρ > max

{
−
σ2
x + 3σ2

y

4σxσy
,−

3σ2
x + σ2

y

4σxσy

}
.
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2NL2 Global Optimality

Theorem

If ρ > 0, the solution points a∗,b∗ given in the previous
theorem are globally optimal.

In other words, K (a,b∗) ≥ 0∀a ∈ R2, with equality only when
a = a∗.

Thus players need not consider mixed strategies. The proof
relies on a geometric interpretation of the players’ strategies.

35 / 56



2NL2 Global Optimality Proof Overview

z =
2x∗2 − x21 − y 2

1

2
√

(b∗ − a)TΣ(b∗ − a)
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2NL2 Global Optimality: Proof Overview cont.

If K (a,b∗) ≤ 0 then x1 + y1 < 0 and either

x21 + y 2
1 < 2x∗2 or x1 + y1 ≤ −2x∗.
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2NL2 Global Optimality: Proof Overview cont.

K (a,b∗) = 2x∗ +
1

2
(x1 + y1 − 2x∗) = 2x∗ + x1 + y1 ≥ 0

when z = 0, with equality only when a = (−x∗,−x∗).
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2NL2 Global Optimality: Proof Overview cont.

Against Player II’s strategy b∗ = (x∗, x∗), any pure strategy
a = (x1, y1) may be represented as

a(r , θ) = (x∗ + r cos θ, x∗ + r sin θ).
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2NL2 Global Optimality: Polar Representation

Letting t(θ) = − cos θ − sin θ,

K (a,b∗) = 2x∗ − rt(θ)Φ(z)

So K < 0 is equivalent to

φ(z) >
2x∗

rt(θ)
= f (r , θ)
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2NL2 Global Optimality: Two Tricks

To avoid the difficulties inherent in Φ(z), we use two tricks:
(1) For z < 0, the normal cdf is bounded by the sigmoidal

Φ(z) <
1

1 + exp
(
−
√

8
π
z
)

(2) For z > 0, by its concavity, Φ(z) < y(z), the line tangent
at z = 0
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2NL2 Global Optimality: Proof Overview cont.

For fixed θ ∈
[
3π
4
, 7π

4

]
:
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2UL2 - Globally Optimal Pure Strategies

Suppose ξ is drawn uniformly at random from
Ξ := [−α, α]× [−β, β], where WLOG 0 < α ≤ β, and the
judge uses the L2 metric.

Theorem

In 2UL2, the strategy pair a∗ =
(
−β

2
,−β

2

)
,b∗ =

(
β
2
, β
2

)
is the

unique globally optimal strategy pair.

To prove this, we let Player II play b∗ and show that the
expected payoff is minimized only when Player I plays a∗.
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2UL2 Proof - Cases
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2UL2 Proof Case 1

In the first case, we
can show directly
that the payoff
function is minimized
only at a = a∗, which
lies in this region.
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2UL2 Proof Case 2

Here we parameterize
the strategy of Player
I along line segments
by slope m and
λ ∈ [0, 1], and show
that the payoff
function is a
decreasing function of
λ, and on the
boundary the payoff
is positive.
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2UL2 Proof Case 3

We parameterize the
strategy by p ∈ [.5, 1]
(i.e. P1) and
x̄ ∈ [0, 2α] (the
length of the upper
boundary of C1) to
show there is no local
minima.
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2UL2 Proof Case 4

The final case is
handled directly; it is
shown by the first
order condition that
no minimum to the
payoff function exists
in this region.
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Generalize to N players

A unit must be split between the players. Each player i
chooses a vector xi ∈ ∆N , where
∆N = {x|x ∈ RN ,

∑
xi = 1, x ≥ 0}. Suppose each player i

supplies evidence of strength λi ≥ 0 in her favor to the judge.
If λi = 0 then the player has supplied no evidence in her favor.
Suppose that based on this evidence the judge decides on a

fair split of the unit award. Let ξ = (ξ1, ξ2, . . . , ξN) be the fair
split, where ξ ∈ ∆N .
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Dirichlet Distribution

Assume that it is common knowledge among the players that
ξ will be drawn from a Dirichlet distribution with parameter
α = (α1, . . . , αN), where αi = λi + 1.. The density function is

f (x) =

∏N
i=1 x

λi
i

B(α)

Where B(α) is a normalizing constant.
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Voronoi Cells in the Simplex

Given the N final-offers, we may partition ∆N into N convex
Voronoi cells. Call these Vi for i = 1, . . . ,N .
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If λi = 0 for all players, the probability distribution is uniform
over the simplex. In this case, the payoff function is

Ki(x1, . . . , xN) = (N − 1)!
N∑
j=1

xj
i

∫∫
Vj

N!
√

2N

√
N + 1

dVj
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Conjecture: Let N ≥ 3. Players 2, . . . ,N demand β and offer
1−β
N−1 to the opponents. Player 1 determines to demand α.

Then P1 is maximized when Player 1 offers 1−α
N−1 to each other

player.

Theorem

For an N player FOA game where ξ is chosen uniformly at
random, assuming the conjecture, a pure equilibrium strategy

is for each player to demand
HN−1

N − 1
for himself and offer the

remaining portion equally to the other players.1
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Thank You
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