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For Example

Two cars approach an intersection...

Each driver can choose to drive (“Dare") or stop ( “Chicken”).
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The Game of “Chicken”

We have four possible outcomes of our game

2 : Dare 2 : Chicken

1: Dare Collision 2 Passes
1: Chicken \ 1 Passes Both Stop



The Game of “Chicken”

The game game with ordered pairs assigning rewards to
players:

D C
D ((0,0) (7,2)
C <(27 7) (6, 6))

Each player secretly commits to a strategy, then both act
simultaneously.
Finally each receives his component reward.



A General Bimatrix Games

In general, a 2-player finite game where players have m and n
strategies respectively, we may summarize the game as an
m x n “bimatrix”

1 2 . n
1 (311; b11) (312, b12) T (alm bln)
(A, B) _ 2 (321,. b21) (322,. b22) (a2n7. b2n)
m (amla bml) (am27 bm2) e (amm bmn)
Let / = {1,---, m} be the set of strategies for Player 1 (the
row player) and J = {1,--- , n} the set of strategies for Player

2 (the column player).



Finite Game in Normal Form

Definition
A finite game I in normal form may be defined as a triple
(N, S, u) where
m N ={1,...,n} is the set of players
mS=35 x---x§,is the set of joint strategy profiles, S; is
the set of strategies available to player i

m u:S — R"”is a utility function mapping each strategy
profile to a payoff vector



A Solution for the Game

So is there a solution for the players?

John Nash (1951) proved the existence of equilibrium points
for all finite games, provided players allow for randomized
strategies.

In a Nash equilibrium, neither player has any incentive to
deviate assuming the other player does not.

Definition
A pair of probability vectors (x*,y*) is a Nash equilibrium for
bimatrix game (A, B) if

u(x,y") < u(x*,y*)Vx € I and wp(x*,y) < wo(x*,y*) Vy € J



Nash Equilibria for “Chicken”

D C

D ((0,0) (7,2)
C<(2,7) (6,6))

There are three Nash equilibria for this game:

m Two pure equilibria, (D,C) and (C,D)

m One mixed equilibrium ((3,%),(3,%))



Formalizing the Coordinated Solution

m A mediator makes a probability distribution over S known
to all players.

m It randomly chooses an s € S according to the
distribution and privately informs each player of his
component strategy.

m If no player has an incentive to deviate knowing the other
players’ conditional distributions, the probability
distribution is self-enforcing.
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The Correlated Equilibrium

R. J. Aumann (1974) introduced correlated equilibrium.
Definition

A probability distribution . over S is a correlated equilibrium if

Vi € N,Vs; € S;,Vt; € S\{si}

> uls) [ui(s) — ui(tis-1)] > 0

s_;ES_;

The linear form

hoe (1) = > uls) [ui(s) — uilti, s7)]

s_;e€S_;

is an incentive constraint.
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First Proof of the Existence of CE

Aumann proved in 1974 that all games possess a correlated

equilibrium.
Proof.
A Nash equilibrium o = (071, ...,0,) is a correlated equilibrium
where
w(s) = [ oi(s)
ieN

and every game has a Nash equilibrium. ]
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The Correlated Equilibrium Set

The set of all correlated equilibria (C) is defined by the
following constraints:

p(s) >0 Vs € S Non-negativity
Zu(s) =1 Normalization

seS
hst.(1t) >0 Vie N,s; #t; €S Incentives

So C is a polytope (the convex hull of a finite set of extreme
points).
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Extreme Correlated Equilibria for “Chicken”
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The Geometric Relationship Between NE and CE

m Hart and Schmeidler (1989) provided a new existence
proof using linear methods which does not rely on the
existence of Nash equilibria.

m We have already established that the set of Nash
equilibria is a subset of C.

m Raghavan and Evangelista (1996) have demonstrated
that in bimatrix games the extreme points of so-called
Nash sets (maximal convex sets of Nash equilibria) are
extreme correlated equilibria.

m Nau et. al. (2004) have shown that in n-player games the
Nash equilibria all lie on the (relative) boundary of C.
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Model for basic FOA (Brams-Merrill, 1983)

Player | (the minimizer) and Player I (the maximizer) each
present a final offer. The arbitrator has an opinion of what he
considers fair, and sides with whichever player’s offer is closest

to the fair settlement.

Assumptions:

m As far as players are concerned, the fair settlement is
chosen randomly from a distribution F with density

function f.
m F is common knowledge.
m WLOG, the median of the distribution is 0.

m The game is zero-sum.
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Optimal Strategies for FOA

Say players choose x; and x,, while the arbitrator chooses &.

The payment made by Player | to Player Il is

x1 if [ =& < |x —¢]
xo if |xg =& > |x —¢|

}(()qd XQ’S) = ‘{

If [x; — &| = |xo — &|, the payment is x; or x, with equal
probability.
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Brams-Merrill Theorem (1983)

Theorem

(1) If f'(0) exists and f(0) > O, then locally optimal strategies

are
i and x; !
X{ = ——— ==
! 2f(0) > 2f(0)
(2) If f is “sufficiently concentrated at the median”, then
these represent the unique globally optimal strategy pair.

Brams and Merrill also provide a weaker condition for global
optimality.

Both Normal and Uniform distributions satisfy the second
condition.
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Divergence of Global Optimal Pure Strategies
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Multiple-lssue FOA

When more than one issue is being arbitrated, two major
variants of FOA have been used (Farber, 1980):

m Issue by Issue: Each party submits a vector of final
offers and the arbitrator is free to compose a compromise
by selecting some offers from each party

m Whole Package: Both parties submit a vector of final
offers and the arbitrator must choose one or the other in
its entirety
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The Multi-Issue Game Setting

m Players | and Il present final-offers a,b € RY
m Judge selects & ~ F as an ideal fair settlement.
m F is common knowledge.
m Judge uses reasonableness function

R(x,€) : R? x R — R to compare final-offers.
m Game is zero-sum.
m Payoff is

Zi aj R(a,E) > R(ba €)

K(a,bl§) = {Z/ bi R(a, &) < R(b,§)
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Choice of F

Normal
&~ N(, L) (WLOG, assume p = 0)

Uniform
& ~ Unif (x_[—a;,aj]), where o > 0
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Choice of R

Criterion Reasonableness Function

Net Offer Rno(x, &) = ‘Zl 1% =&
L, Ri,(x,€) = — Zj:l X — &l
Lo Ri..(x, ) = —max; {[x — &}
L, R, (&) = =30, 1% —&I°

) =
L, RLz(xv ) Z_/ 1(XJ gj)
Mahalanobis Ry(x,£) = —(x — &)’ (x — &)
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2NNO

Theorem

Any pure strategies from

, \/271'(0')2( + 2pox0, + 02)
G = X7, (=1) > —x7| :x"eR

i = 1,2 are independently optimal for Players | and II.

This is easily found as the game collapses to the one
dimensional case.
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2NLy, 2NLy, 2NL,

Theorem

In 2NLy, 2NL, or 2NL, if pure optimal strategies exist for
Players i = 1,2 then they are given by

O y7) = ((=1)x", (=1)'x")

\/27r(a)2< +2poyoy + 02)
where x* = 2 .
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2NL; Proof Sketch

/ —b*

As it is sub-optimal for either player to choose a pure strategy
off the line y = x, the game reduces to the one-dimensional

case.
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2NL ., Proof Sketch

e

N

—b*

As it is sub-optimal for either player to choose a pure strategy
off the line y = x, the game reduces to the one-dimensional

case.
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2NL, Circles

1/p
DLp X y (Z |X, y1|p)

EEERGR

p=64

“Circles” and Midset curves under Minkowski metrics (L)
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2NL, Proof Sketch

As it is sub-optimal for either player to choose a pure strategy
off the line y = x, the game reduces to the one-dimensional

case.
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2NL, Proof Sketch (cont.)

‘et

Lemma 4.28

This is because the midset curve between two such points
—x*,x* in L, nowhere has a derivative equal to —1.
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2NL, Local Optimality

Theorem

24302 302402

4a'xayy y 4UX0'yy } The pure
strategy pair in the previous theorem is locally optimal.

In 2NL,, suppose p > max{ —

Because Midy,[a,b] is a straight line, we can essentially reduce
the dimension of F.
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2NL, Payoff Function

Let (£,m) ~ N(0,X) be the opinion of the arbitrator, where

2

2
Oy  pPOxOy
poxoy O,

Gi(a,b) = {(x, V)| —x)* + (11— ¥)* < e —x)*+ (2 —¥)*}
and G,(a, b) defined similarly.

'Di - P((fﬂ?) S Ci(a7b))

Assuming a # b, the expected payoff

K(a,b) = (x1 + y1)P1 + (X2 + y2) P2
may be written
K(a,b) = (2 + y2) + (1 + y1 — %2 — y2) P1.
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2NL; Local Optimality Proof Overview cont.

Express P; one-dimensionally:

Pi=P((a—&>+(1—n)’<(e—8’+0—-n)?7 (1)

2 _ 2 _ 2
_P<(X2—X1)§+(yz—)’1)77<X2+y2 2X1 yl) )

= P(Z < z2) (3)

where ) ) ) )
;= X5+ Y, —X{ — i (4)
2y/(b—a)"X(b—a)

we may write
K(a,b) = e +y2) + (a+y—x—y)®(z) (5

where ®(z) is the standard Gaussian cdf.

33/56



2NL; Local Optimality Proof Overview cont.

By solving the system of first-order equations

d d d d
L Ky = 2K Klag = — K
dxq T dn T dy,

a* b* — 0

a*bx — ——
dX2

we arrive at the unique a*, b* given in the theorem. It is
straightforward to verify that the second order condition holds
provided

o +30; 30+ 05}

40,0, = 4doyo,

p > max{—
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2NL, Global Optimality

Theorem

If p > 0, the solution points a*, b* given in the previous
theorem are globally optimal.

In other words, K(a,b*) > 0Va € R?, with equality only when
a=a".

Thus players need not consider mixed strategies. The proof
relies on a geometric interpretation of the players’ strategies.
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2NL, Global Optimality Proof Overview

x*, ")

(
z>0

2% — ¢ =y
2,/(b" —a)Tx(b* —a)

zx 0
(—a*, —x")

2<0
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2NL, Global Optimality: Proof Overview cont.

If K(a,b*) <0 then x; + y; < 0 and either

X2 +y2<2x? or x4y < —2x"
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2NL, Global Optimality: Proof Overview cont.

(%, 2%)

1
K(a,b) =2x"+ - (a+y —2x) =2 +xi+y 20

when z = 0, with equality only when a = (—x*, —x*).
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2NL, Global Optimality: Proof Overview cont.

Against Player Il's strategy b* = (x*, x*), any pure strategy
a = (x1,y1) may be represented as

a(r,0) = (x* + rcosf,x* + rsinf).
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2NL, Global Optimality: Polar Representation

Letting t(0) = —cosf — sin 6,

K(a,b") = 2x* — rt(0)®(z)

So K < 0 is equivalent to

é(z) > = (r,0)

rt(0)
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2NL, Global Optimality: Two Tricks

To avoid the difficulties inherent in ®(z), we use two tricks:
(1) For z < 0, the normal cdf is bounded by the sigmoidal

1
1+ exp (—\/§z>

(2) For z > 0, by its concavity, (z) < y(z), the line tangent
atz=20

d(z) <
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2NL, Global Optimality: Proof Overview cont.

For fixed 6 € [%T”, 7—”}:

>0 <0
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2UL, - Globally Optimal Pure Strategies

Suppose £ is drawn uniformly at random from

= :=[-a,a] x [-f, 5], where WLOG 0 < o < f3, and the
judge uses the L, metric.

Theorem

In 2ULy, the strategy pair a* = (—2,-5) 'b* = (£,5) is the
unique globally optimal strategy pair.

To prove this, we let Player Il play b* and show that the
expected payoff is minimized only when Player | plays a*.
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2UL, Proof Case 1

In the first case, we i
. T
can show directly v,
that the payoff
function is minimized

only at a = a*, which
lies in this region.
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2UL, Proof Case 2

Here we parameterize
the strategy of Player
| along line segments
by slope m and

A € [0,1], and show
that the payoff
function is a
decreasing function of
A, and on the
boundary the payoff
is positive.
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2UL, Proof Case 3

We parameterize the ’

strategy by p € [.5,1] bxj
(i.e. P;) and

X € [0,2a] (the
length of the upper
boundary of () to
show there is no local
minima.
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2UL, Proof Case 4

The final case is ’

handled directly; it is b~j
shown by the first
order condition that
no minimum to the

payoff function exists
in this region.
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Generalize to N players

A unit must be split between the players. Each player i
chooses a vector x' € AN, where
AN = {x|x € RV 3" x; = 1,x > 0}. Suppose each player i

supplies evidence of strength \; > 0 in her favor to the judge.
If A; = 0 then the player has supplied no evidence in her favor.
Suppose that based on this evidence the judge decides on a

fair split of the unit award. Let & = (&1,&,, ..., &n) be the fair
split, where £ € AN,
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Dirichlet Distribution

Assume that it is common knowledge among the players that
& will be drawn from a Dirichlet distribution with parameter

a = (aq,...,ay), where a; = \; + 1.. The density function is
N X
f(X) _ Hi:l Xi
B(a)

Where B(a) is a normalizing constant.
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Voronoi Cells in the Simplex

Given the N final-offers, we may partition AN into N convex
Voronoi cells. Call these V; fori=1,... N.

(0,0, 1)

(1,0,0)
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If \; = 0 for all players, the probability distribution is uniform
over the simplex. In this case, the payoff function is

N

Ki(x, ..., x") = _I,ZXJ’// NI\/Q_N
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Conjecture: Let N > 3. Players 2,..., N demand [ and offer
,1\,;_‘1 to the opponents. Player 1 determines to demand a.
Then Py is maximized when Player 1 offers £=% to each other
player.

Theorem

For an N player FOA game where £ is chosen uniformly at

random, assuming the conjecture, a pure equilibrium strategy

N_ll for himself and offer the

is for each player to demand

remaining portion equally to the other players.:
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